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It is shown that energy #ow between weakly coupled reverberant systems, for
example reverberation rooms coupled by a small window, can be Anderson
localized. The e!ect is signi"cant when the energy #ow rate (in units of inverse time)
is comparable to or less than modal spacings. It is found that the energy partition
in the localized regime slightly overshoots its (low) asymptotic value. The e!ect is
demonstrated in numerical simulations and in a laboratory ultrasonic system.

( 2000 Academic Press
1. INTRODUCTION

The transient #ow of di!use vibrational energy between coupled substructures is
often modelled by means of an analysis similar to that of statistical energy analysis
(SEA) [1}3]. In this approach the energy in each substructure is thought to
dissipate at a rate particular to that substructure, and to di!use from one to the
other at a rate proportional to the di!erence in energy per mode and proportional
to a symmetric coupling constant.

In a pair of widely quoted papers, however, Hodges [4, 5] pointed out that if the
vibrational eigenmodes of the whole structure are Anderson localized, then
di!usion cannot take place. Indeed, energy originally placed in one eigenmode
must stay in that mode. Only the modes localized near the source will be excited by
the source, the receiver can detect only excitation in the modes localized near it. If
the receiver and source are well separated, the response is negligible*regardless of
dissipation or the lack thereof, and regardless of the amount of time one waits for the
di+use signal to arrive. The appealing analogy, between the transport of di!use
vibrations and the conductive transport of heat, is not reliable.

There have been numerous demonstrations of localization of vibrations in
quasi-one-dimensional structures [6}8] for which localization is relatively
common, and other demonstrations of the transition between di!usion and
localization in multi-coupled one- and two-dimensional disordered structures
[9}13] for which localization is weaker. In all this work it appears that the simplest
model in which that transition can occur has been neglected. It is our hypothesis
that this system is interesting in its own right, and also that study of this simple
system can inform our understanding of more complex systems.
0022-460X/00/141111#24 $35.00/0 ( 2000 Academic Press
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In this paper, we study a few versions of the classic problem of coupled
reverberation rooms. The predictions of an SEA-like model in which energy
di!uses between the rooms is contrasted with a theoretical calculation in which
energy is localized in one room. Numerical simulations of vibrations in
a two-dimensional "nite di!erence model of coupled reverberation rooms, and
laboratory experiments on weakly damped coupled elastic bodies, con"rm the
theoretical arguments.

2. STATISTICAL ENERGY ANALYSIS FOR TRANSIENT ENERGY FLOW

An SEA-like model of transient energy #ow [2, 3] between two undamped rooms
of equal volume and equal modal density suggests that the following equations
should describe the evolution of energy densities:
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where E
i
is the spectral energy density in substructure i at the frequency of interest.

Figures 1 describe the physical systems which are modelled here. Equation (1)
describes the deposition of energy in substructure number 1 by a source with power
P, and its leaking into substructure number 2 at a rate proportional to the
di!erence in energy per mode. An initial impulsive unit energy deposit in region
1 leads to an eventual state with equal amounts of energy in each substructure,

E
1
(t)"(1/2)[1#expM!2ptN], E

2
(t)"(1/2)[1!expM!2ptN]. (2)

A ray-acoustic model suggests that the leaking rate p may be estimated, in the case
that the substructures are rooms coupled through a transparent window of area A,
to be

p"Ac/4<
0-
, (3)

where <
0-

is the volume of each room and c is the wave speed.
Such a model depends on the ray-acoustic picture, which in turn is acceptable

only for wavelengths su$ciently short compared to the window size. Nevertheless,
it is the SEA conceit that equations like equation (1) should still apply, not
withstanding the admitted greater di$culty in estimating leak rates by considering
di!raction at the window.

The SEA conceit is incorrect. Energy #ow in undamped systems must cease after
a time of the order of the modal density, because time evolution in the di!use "eld
must be a product of beating between nearby modes. If D is the modal density
(modes per unit frequency dN/du where N is the smoothed modal count (staircase)
function) then the notion that time scales of the #ow must be no greater than the
modal density, coupled with an assumption that the time scale of the #ow is the
leaking rate p (i.e., that the leaking continues until equipartition) suggests that
leaking rates p must be greater than or equal to a quantity of order 1/2nD. As
D&<

0-
u2/2n2c3 one concludes, by comparison with equation (3), that there is



Figure 1. The system considered consists of two lightly coupled reverberant bodies. (a) The
numerics simulated the dynamics of two meshes of unit point masses all attached to the intersections
of unit-tensioned strings. The meshes were given rough boundaries, as sketched. In the "rst numerical
study they were coupled by means of a short window. The source site is indicated by a small star; the
many receiver sites are indicated by dots. In another simulation (not pictured) the meshes were
coupled by 12 light springs, connecting sites of one mesh with the corresponding sites of the other. (b)
Aluminum block used for laboratory con"rmation of the e!ect. It had four distinct and nominally
identical dry-coupled sources/receivers attached, two on each side. A small ligament of dimensions
2)2]2)2]1)0 mm near the centre of the gap acts as a window and connects the two sides acoustically.

COUPLED REVERBERATION ROOMS 1113
a critical frequency below which SEA must fail. u
crit

is the solution of
p"Ac/4<

0-
"1/2nD, i.e., j

crit
"(An)1@2 . Except for a numerical factor of order

unity, this cuto! is the same as that of di!raction corrections in the ray-acoustic
picture.
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An alternative argument that leads to the same result is provided by applying
perturbation theory to the eigenvalue problem of coupled rooms. The coupling
mixes the modes of the separate rooms. It is well known that, at leading order,
perturbation theory indicates that modes mix well only if the coupling is in some
sense comparable to or stronger than the unperturbed spacing between the original
modes. Perturbation theory itself is manifestly valid only if the ratio of coupling to
spacing is small. Thus, for large spacing (i.e., low modal density) compared to
coupling strength (which presumably may be quanti"ed by the nominal leaking
rate p), i.e., for small Dp, we expect the typical mode of the composite to be localized
in one room or the other. One again concludes that equipartition cannot take place
at low values of Dp.

That SEA fails at low modal density is generally conceded. We see that the failure
here is not for low modal density per se, nor for modal density low compared to
absorption time (equivalent to low modal overlap.) The critical parameter is modal
density times coupling rate.

This lack of equipartition in weakly coupled reverberation rooms is a kind of
Anderson localization, albeit for a zero-dimensional multi-coupled system. The
critical quantity Dp is similar to Thouless dimensionless conductance [14] in that
the physical conductance is the leaking rate p; it is non-dimensionalized by the
modal density. It is also related to the inverse of Anderson's=/< parameter [15],
the ratio of disorder= to coupling strength <. Coupling strength is characterized
by the leaking rate, and disorder by the typical spacing between pseudo-modes of
the separate rooms, i.e., the inverse of the modal density.

In this paper, we shall study the energy #ow between two such reverberation
rooms, and in particular scrutinize the behavior as the critical frequency is
exceeded, or not.

3. A MODAL PICTURE OF TRANSIENT ENERGY FLOW

We consider a structure governed by the following di!erential equation:

L2U(t)
Lt2

"C U(t)#d (t)S, (4)

where C is a self-adjoint operator and U and S are vectors in the Hilbert space. S is
the source distribution and U is the response. With the understanding that we are
interested in the response within a narrow band of frequencies centered on u&X,
it su$ces to write

U(t)"u (t) exp(!iXt), (5)

where u is slowly varying in time. We can then approximate the governing ordinary
di!erential equation (ODE) as a Schrodinger equation

!iL
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2
#*]u#sd (t). (6)
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This transformation is not necessary for the purposes at hand, but it does simplify
the subsequent analysis. We have furthermore pictured C as nearly block-diagonal,
and decomposed it as the sum of distinct self-adjoint operators H

1
and H

2
and

a (presumed small) coupling term *. H
i
is taken to be the operator that governs the

dynamics of room number i. H
1

has eigenvectors tn with eigenvalues u
n
; H

2
has

eigenvectors /l with eigenvalues al .
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1
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2
/l"a

v
/v,

wn )wm"d
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, /l )/k"dlk , wn )/l"0,
(7)

where ) signi"es an inner product. tn and /l are not modes of the entire system, but
can be termed pseudo-modes, they nearly satisfy the governing equations, and do
span the space. For simplicity, we take * to be purely o!-block-diagonal. This
entails no loss of generality as we may de"ne H to include the block diagonal
portion of *. Thus

/l ) */k"wn ) *wm"0. (8)

The o!-diagonal parts of * do not, however, vanish:

/l ) *wn"wn ) */l,<
nl . (9)

We furthermore take the source to act only in room number 1; thus

s )/l"0, s )wn,s
n
. (10)

In the absence of coupling, *"0, our solution of equation (6) is

u"+
n

expMiu
n
tNwn(wn ) s). (11)

One "nds that the response remains in room number 1. We can calculate, in each
room, a quantity which we will call energy, E"u ) u"E

1
#E

2
:

E
1
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m

Du )wm D2"+
m

Ds )wm D2"s ) s,

E
2
"+

k
Du )/k D2"0,

(12)

and "nd that they are constants.
If *O0 we write the solution in the form

u(t)"+ a
n
(t)wn#+ bl(t)/l (13)
n l
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and derive coupled ODEs for the coe$cients a and b:

!iL
t
a
n
"u

n
a
n
#+

k
<
nkbk(t)#(wn ) s)d(t),

!iL
t
bk"akbk#+

n

<
nkan(t).

(14)

3.1. SOLUTION AT LEADING ORDER IN <

If * is in some sense small, it is reasonable to attempt a series solution in powers
of <. To leading order one "nds that a (t) is independent of *:

a
n
(t)"i (wn ) s)expMiu

n
tNH(t), (15)

where H is the unit step function. One also "nds, at leading order, that b is governed
by the simple ODE:

L
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bk(t)"iakbk!H (t) +

n

exp(iu
n
t)<

nk(wn ) s), (16)

which has the solution

bk(t)"iH(t) +
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n
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We see that, to this order, E
1

is still given by equation (12), and E
2

may readily be
calculated:
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The terms nOn@ have vanishing expectation S<
nk<n{kT"S<2Td

nn{
. So
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n
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n
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The sum over k may be replaced with a factor of the modal density in room 2 and
an integral over a:
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Thus the initial leaking rate, p"2nDS<2T, is described in terms of the modal
density D and the mean-square value of the o!-block-diagonal elements of <. This
result is valid for all systems of form (6), not just the ones for which we expect
a ray-acoustic model or an SEA Ansatz to apply. The analysis is, however,
a perturbative one in the strength of <. Even at small v it is apparent that the
perturbation series solution of equations (14) will have secular terms and that
equations (15)}(19) do not apply beyond early times. Application to later times
requires that the series be extended to higher order. Nevertheless, the result
indicates that the SEA conceit must be correct at early times even at very low modal
density. Energy leaks at a simple initial rate proportional to modal density and to
the coupling strength. Leaking rates can be arbitrarily slow. At low Dp the energy
densities will not (according to the arguments in the preceding section) asymptote
to equipartition, but there is, apparently, no indication of that during the early
stages of the #ow.

3.2. SOLUTION AT LOW D

Energy does not di!use classically at low D, but it does #ow. It remains an open
question as to how the weak #ow proceeds. To answer this we need a solution of
equations (14) valid for all times. That is possible in a limit of very low modal
density, i.e., in the localized regime.

In the localized regime the little energy that does #ow is carried by mode pairs
(t, /) which happen to di!er only slightly in frequency. Only these pairs mix well
enough not to localize. An approximate solution to equations (14) may therefore be
obtained by truncating the sums to a single term each, the mode of the adjacent
room with the closest frequency ak to u

n
. Dropping the subscripts,

!iL
t
a"ua#b<#sd (t),

!iL
t
b"aa#a<,

or
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s
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where a@ and b@ are equal to ae~*ut and be~*ut respectively. Standard methods for
solutions of 2]2 symmetric systems give us a solution
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where j
`

and j
~

are the eigenvalues of the 2]2 matrix [0 <; <a!u]

j
$
"

(a!u)$J(a!u)2#4<2

2
, (23)
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b2 is the energy in room 2 associated with the mode of frequency a,

Db(t) D2"Db@ (t) D2"
4s2 (j

`
j
~

)2
<2 (j

~
!j

`
)2
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`
!j

~
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"s2
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(a!u)2#4<2
sin2[J(a!u)2#4<2t/2], (24)

Db D2 oscillates at the beat frequency (j
`
!j

~
).

The di!erence frequency a!u between the nearby modes of the two rooms is
a random number, with spectral density D. We take an expectation of equation (24)
by inserting a factor of D and integrating over all a. On also performing a sum over
all modes in room 1 we obtain

SE
2
T"ED P

=
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da
4<2

(a!u)2#4<2
sin2[J(a!u)2#4<2 t/2]. (25)

On suitable variable change this becomes

SE
2
T"2ED D< D P

=

~=

db
sin2(J1#b2t< )

1#b2
. (26)

As tPR this is manifestly

lim
t?=

SE
2
T/E"DnD< D . (27)

This is one of the central results of the present calculation. It is predicted, in the
limit of low values for DS<2T1@2, that the asymptotic level of energy in room 2 is
less than that in room 1 by a factor of order D<. This is a prediction that is subject
to corroboration in numerical simulations or experiments.

We must, however, also recognize that < is a random number, being the matrix
element of the coupling between modes of the two rooms. Thus, lim

t?=
SE

2
T/E is

more properly written as DnSD< DT. As S<2T is related to the initial leaking rate p,
we can write this as

lim
t?=

SE
2
T/E"(npD/2)1@2[SD< DT/S<2T1@2], (28)

which describes the ultimate partition of energy as proportional to the square root
of the dimensionless conductance pD, ie., in terms of the initial leaking rate times
the modal density, and a numerical factor of order unity related to the statistics
of <.

We will consider two forms that< 's statistics might take. For each form we make
detailed predictions for (1) the asymptotic energy level in room 2, and (2) the
manner in which E

2
approaches its asymptote.
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If the coupling is con"ned to a single point then < ought to be the product of the
two modal amplitudes at that point and therefore < should be the product of two
independent centered Gaussian random numbers. We write these two random
numbers as x and y, each with identical p.d.f.

p (x) dx"expM!x2/2S<2T1@2N/J2nS<2T1@4 dx (29)

such that <"xy, and S<2T"Sx2TSy2T. The average of D< D is obtained directly:

SD< DT"SDxy DT"(2/n)S<2T1@2, (30)

allowing the conclusion

lim
t?=

SE
2
T/E"(npD/2)1@2[SD< DT/S<2T1@2]"(2pD/n)1@2. (31)

At intermediate times the average of equation (26) over all values of < is more
demanding. On taking a time derivative of equation (26) one "nds

dSE
2
T

dt
"2ED<2 P

=

~=

db
sin(2J1#b2t< )

J1#b2
"2nED<2J

0
(2t D< D ), (32)

On averaging over < this becomes

dSE
2
T
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x2y2J
0
(2t Dxy D) expM(!x2!y2 )/2S<2T1@2Ndx dy

"32EDS<2TP
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0
P
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0

x2y2J
0
(4tS<2T1@2 Dxy D ) expM!x2!y2Ndx dy, (33)

an expression which may be evaluated in terms of elliptic integrals [16]:

dSE
2
T

dt
"

32EDS<2T
[4#m2]3@2 P

n@2

0

1!2m2sin2h/[4#m2]

J1!m2sin2h/[4#m2]
dh, m,4tS<2T1@2. (34)

This integral is done numerically. It is plotted in Figure 2, versus non-dimensional
time m"4tS<2T1@2, in units of 32EDS<2T. Its antiderivative, being E

2
itself, is also

plotted, in units of 8DES<2T1@2. It is seen that the energy in room 2 overshoots its
asymptotic level by 5)5%, achieving its maximum at a time t&1)09/S<2T1@2"
(1)09/p)(2nDp)1@2. There is a time scale for the approach to the maximum, that may
be quanti"ed by t

characteristic
"0)2677/S<2T1@2, being the time at which E

2
achieves

67% of its maximum value. The overshoot can be thought of as a remnant of a beat
pattern, substantially smoothed by averaging over values of <. The overshoot
is a prediction that could perhaps be con"rmed in experiments. The 5)5% e!ect is



Figure 2. Evolution of the energy in room 2 for the case that < has the statistics of the product of
two Gaussian random numbers. The dashed curve shows E

2
in units of 8DES<2T1@2 ; it asymptotes to

a value of 1
4
. The solid curve shows its time derivative, in units of 32EDS<2T.
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slight though, and the maximum is followed by a very slow relaxation towards the
value at t"R (reaching a point within 1% of the asymptotic value at
t"5)25/S<2T1@2.) The overshoot may be di$cult to detect.

If there is reason to think that < is the sum of a large number of independent
random numbers, then the central limit theorem indicates that <'s statistics ought
to be Gaussian. One therefore writes

p (< ) d<"exp(!<2/2S<2T ) d</(2nS<2T)1@2 (35)

and "nds

SD< DT"(2/n)1@2S<2T1@2. (36)

Therefore,

lim
t?=

SE
2
T/E"(npD/2)1@2[SD< DT/S<2T1@2]"(pD)1@2, (37)

which may be compared to equation (31). We see that di!erent assumptions about
the statistics of < lead to slightly di!erent predicted proportionalities between
JDp and the ultimate amount of energy in room 2.



Figure 3. Evolution of the energy in room 2 in the case that < is itself a Gaussian random number.
The dashed line shows E

2
in units of 8DES<2T1@2 ; it asymptotes at a value of J2n/8"0)31333. The

solid line shows its time derivative, in units of 32EDS<2T.
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At intermediate times we average equation (32) to obtain [16, eqn. 2.12.9(1)]

dSE
2
T

dt
"P

=

~=

2nED<2J
0
(2t D< D )

expM!<2/2S<2TN
(2nS<2T)1@2

d<

"2nEDS<2TexpM!S<2Tt2N

][(1!2S<2Tt2)I
0
(S<2Tt2)#2S<2Tt2I

1
(S<2Tt2 )], (38)

where I
n
is the modi"ed Bessel function of the "rst kind.

This expression is evaluated and plotted in Figure 3 versus non-dimensional time
m"4S<2T1@2t, in units of 32EDS<2T. Its antiderivative, being E

2
itself, is plotted

also, in units of 8DES<2T1@2. Again it is seen that E
2

overshoots its ultimate value
(0)313 in the plot), in this case achieving its maximum at a time m"3)555 or
t"0)889S<2T~1@2. In this case it overshoots by 17)5%, an amount that may be less
di$cult to detect than the 5)5% overshoot predicted by the other model. The value
to which E

2
ultimately relaxes is achieved much later; not until t"3)38/S<2T1@2 is

E
2

within 1% of its "nal value.
The two models for the statistics of < make predictions which di!er in

quantitative details, but they concur in predicting that the energy is not
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equipartitioned, even at asymptotically late times, and they concur in predicting
a degree of overshoot as the energy in room 2 approaches its steady state value.
Neither of these features can be obtained from an SEA-like di!usion model.

4. NUMERICAL SIMULATION

To con"rm these predictions we have studied the transient vibrations of a pair of
coupled large two-dimensional meshes (Figure 1(a)). The system may be thought of
as a spatially central-di!erenced version of a pair of coupled membranes, or as
a spatially exact treatment of a pair of coupled meshes consisting of inertialess
strings and point masses. We have studied such systems before [17]. In each
&&room'' the dynamics of site (i, j ) are governed by the di!erential equation

d2

dt2
u
ij
#(4u

ij
!u

ij~1
!u

i~1j
!u

ij`1
!u

i`1j
)"0. (39)

The site indexes i, j have ranges that depend on the chosen size of the room,
typically 200]200. The displacement is set to zero on the boundary of the room,
a boundary that is randomly rough, in the fashion described in reference [17]. Each
room was given a di!erent rough boundary. It is this di!erence between the rooms
that constitutes the disorder needed for localization. (In the absence of a di!erence
between the rooms, the modes of each room separately would be identical, a"u;
the coupling would couple degenerate modes; all modes of the composite would be
equipartitioned and thus the di!use "elds would be also.) At extremely low
frequencies, with wavelengths long compared to the scale of the rough boundary,
the rooms appear identical and we would therefore expect equipartition to be
recovered.

The above equation was solved by central di!erences in time, from an initial
condition consisting of a unit velocity on the chosen source site in room number 1.
A time step size of 0)47 was chosen, about 50% more conservative than the value
need to ensure stability. This choice of time step also served to minimize, for the
frequencies of interest, dispersion from the time stepping.

The rooms were coupled in a variety of fashions. In one version the rooms were
coupled by setting, at each time step, the displacements in each room equal along
a chosen &&stitch''. In another version the rooms were coupled by supplementing
equation (39) with an additional force on the sites along the stitch, a force
proportional to the di!erence in displacements of the sites in the stitch between the
rooms, thus modelling the coupling between the rooms by means of a short row of
springs connecting the rooms. Stitch lengths were typically 4}6. The results from
these two versions are similar to those of the third and fourth versions, for which we
present detailed results.

In a third version (Figure 1(a)) the rooms are coupled by means of a window, of
length 6 sites, set in the wall of each room. This case corresponds most closely to the
usual picture of coupled reverberation rooms, and to the system studied in our
experiments. In a fourth version (not shown), we couple the rooms by connecting



Figure 4. For the case in which the rooms are coupled by a small window, the fraction of the energy
that is in room 2 is plotted versus time for the three lowest bins. **, Bin 1; - - - -, bin2; } } }, bin 3.
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each of a set of several randomly chosen site pairs of the two rooms by a weak
spring.

In each version, the displacement u(t) was recorded for each of 16 chosen receiver
sites in each of the two rooms. Each such record was cosine-bell time-windowed,
Fourier-transformed, and integrated over 16 distinct short ranges in frequency. The
result, for each receiver, was an array of spectral power density versus time and
frequency. The power densities from each of the 16 receivers in each room were then
added to give an estimate for each room's average spectral power density, as
a function of time and frequency. Thus, quantities proportional to E

1
(t) and E

2
(t)

for each of 16 frequency bins were constructed. The values so constructed inevitably
have #uctuations, as the receivers sample only the signal at their positions, but
simple arguments suggest that the (spatial and frequency) averaging we do,
combined with averaging over 15 con"gurations, should have been su$cient to
reduce these #uctuations to about 2%.

4.1. ROOMS COUPLED BY A WINDOW

In Figures 4}7 we plot the results of the numerical simulation of two coupled
reverberation rooms, coupled by a window. These "gures show the evolution of the



Figure 5. For the case in which the rooms are coupled by a small window, the fraction of the energy
that is in room 2 is plotted versus time for bins 4 (bottom curve), 5 (middle curve) and 6 (top curve).
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energy in a pair of 207]207 rooms, each with boundary roughness with
a maximum depth of 9. The quantity E

2
/E is plotted, versus time, for each of 16

frequency bins. These bins span a range of wavelengths from 40 (at the midpoint of
bin 2) to 4)0 (at the midpoint of bin 16), thus spanning a wide range in comparison
to window size. Except in bins 1 and 2, the wavelengths are much smaller than
room size.

In each bin, except for bins 1 and 2 for which the room is perhaps too small for
statistical treatment, the predictions of the theory are corroborated. We see
a degree of localization that varies from strong at low frequencies (where modal
density D is small) to weak at high frequencies (where D is great.) In bin 5 for
example, the late time value of E

2
/E appears to be about 0)25, less than the

equipartition value of 0)50. We see a smooth transition as E
2

rises from zero to its
asymptote. The predicted overshoot is apparent also, in bins 4}10. At low
frequencies, in bins 1}3, the overshoot is not obvious, but the other peculiarities of
these low frequencies, presumably related to the small ratio of room size to
wavelength, would mask the small overshoot e!ect. At high frequencies the
overshoot is rather weak. It may be that the violation of the strong localization



Figure 6. For the case in which the rooms are coupled by a small window, the fraction of energy in
room 2 associated with bins 7 (bottom curve), 8, 9, and 10 (top curve).
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assumption, made just prior to equation (21) is responsible. It may be that the
overshoot is di$cult to detect because the relaxation to the ultimate value is so
slow.

We also investigate prediction (31). Modal densities D are estimatable from an
approximation that our structure has no dispersion or anisotropy (approximately
true at these frequencies) using the standard formula for modal density in a square
Dirichlet membrane,

D"XA/2nc2!¸/4c. (40)

Setting A"(207!9)2, c"1, ¸"207}9, taking p from the early time slopes of the
curves shown in Figures 4}7, and taking the late time value of E

2
/E

total
from the

average value of the curves shown in these "gure between times 90 000 and 100 000,
we construct Table 1.

The agreement with theory continues to be remarkable. The degree of
localization is well approximated by the estimate (2pD/n)1@2. That the estimate is
consistently higher than the observations, i.e., that localization is more severe than
predicted by about 20% is not a serious #aw; the theory took the coupling to be of
the simple form of a small perturbation in the sti!ness matrix. The simulated system



Figure 7. For the case in which the rooms are coupled by a small window, the fraction of the energy
that is in room 2 is plotted versus time for bins 11}16: , bin 11; - - - -, bin 12;**, bin 13; } } }, bin
14; j}j}j , bin 15; , bin 16.
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consisting of a transparent window between the two rooms is not, however, readily
put in that form.

4.2. ROOMS COUPLED BY SEVERAL SPRINGS

Numerical simulations were also carried out for a system consisting of a similar
pair of reverberation rooms, but coupled by a set of n

spring
"12 springs, each of

sti!ness K"0)16, placed at random positions. This system is one for which
< should be a Gaussian random number, with a mean-square value that can be
estimated a priori.

In such a system the matrix element of * between site (i, j ) of room 1 and site (l, k )
of room 2 is zero unless (i, j ) "(l, k ), and unless (i, j ) is one of the n

spring
sites on

which a spring of sti!ness K has been placed. It is equal to !K/2X otherwise. Thus
the quantity < is given by

<
nl"wn ) */l"!(K/2X)

nspring
+
s/1

tn
is js

/l
is js

. (41)



TABLE 1

Parameters of the waves and the transport taken from the numerial simulation of the
rooms coupled by a window

E
2
/E

total
at

Bin Central u j p D t"105 (2pD/n)1@2

1 0)052065 121 2)59e-8 275 0)002
2 0)156195 40 2)33e-6 925 0)0715 0)37
3 0)260325 24 3)99e-5 1575 0)136 0)200
4 0)364455 17 4)49e-5 2225 0)189 0)252
5 0)468585 13)4 6)16e-5 2875 0)250 0)307
6 0)572715 11)0 4)66e-5 3525 0)268 0)323
7 0)676845 9)3 4)92e-5 4174 0)300 0)362
8 0)780975 8)0 4)87e-5 4824 0)315 0)387
9 0)885105 7)1 4)74e-5 5474 0)332 0)406

10 0)989235 6)35 4)59e-5 6123 0)345 0)423
11 1)09336 5)7 4)40e-5 6773 0)366 0)436
12 1)19749 5)25 4)46e-5 7423 0)375 0)459
13 1)30163 4)8 4)36e-5 8073 0)380 0)473
14 1)40576 4)5 4)10e-5 8722 0)395 0)477
15 1)50988 4)2 3)89e-5 9372 0)400 0)482
16 1)61401 3)9 3)66e-5 10022 0)405 0)483
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This is the sum of n
spring

random numbers, each of which is the product of two
centered Gaussian random numbers, each with the mean square given by the
normalization of the pseudo-modes. St2T"S/2T"1/N, where N is the number
of sites in each room. If n

spring
is su$ciently large, then the central limit theorem tells

us that < should be a centered Gaussian random number, with a mean square
equal to the sum of the mean squares of the terms composing <. Thus,

S<2T"(K/2X)2
n
spring
N2

. (42)

The theory above then predicts that the initial leaking rate p is 2nDS<2T . The
modal density is given by equation (40), so we estimate

p"
n
spring
N

K2

4X
"2]10~6/X, (43)

a leaking rate that scales inversely with frequency.
We furthermore predict that the localization fraction, in accord with equation

(37), should be (pD)1@2, or

E
2
/EPS

K2n
spring
4

"0)156, (44)



Figure 8. The fraction, of the total energy, that resides in room 2. Results in bins 2 (top curve), 3 and
4 (bottom curve) from a numerical simulation of a pair of 207]207 rooms with roughness 9; 12 spings
of sti!ness 0)16 each couple the rooms.
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independent of frequency. The energy in room 2 is expected to overshoot its
asymptotic value by about 17%.

The results of the numerical simulations are shown in Figures 8}10. The initial
slopes have been estimated from the numerical results, and may be compared with
prediction (20). In bins 4 and below, the initial slope is di$cult to measure, but for
bins 5}10 it is readily found. They are, respectively, 5]10~6, 3)6, 3)0, 2)7, 2)45 and
2)2; each with an uncertainty of about 0)1. Equation (20) on the other hand, predicts
4)3, 3)51, 2)94, 2)56, 2)25 and 2)02. These are not in perfect agreement, but are close
enough that we may attribute the di!erences to Monte Carlo #uctuations or to
minor errors in the model. The observed initial leaking rates appear to be
consistently greater than predicted, albeit by only &10%.

The asymptotic values of the partition of energy may also be compared with
equation (44). In the numerical simulations, bins 2, 3 and 4 have asymptotic values
of about 0)35, 0)20 and 0)14 respectively. Bins 5}10 all have asymptotic values of
about 0)11. At higher frequencies it is not obvious that the asymptote has been
achieved, its value therefore cannot be estimated. In any case it is clear that the
numerical simulations do show localization, but the degree of localization is
mispredicted by our theory, by about 30%.

Overshoot is observed, but not in precise accord with theory. The lower
frequencies, bins 2}7, show overshoots of 32, 20, 11, 14, 12 and 8% respectively. For
the higher bins overshoot is di$cult to estimate; but it appears to be signi"cantly
less than the predicted 17%.



Figure 9. The results in bins 5 (top curve), 6, and 7 (bottom curve) from the system of Figure 8.

COUPLED REVERBERATION ROOMS 1129
There are minor discrepancies between theory and the results of the numerical
simulations. It is outside the scope of this communication to pursue the causes of
these minor quantitative discrepancies. Nevertheless, one may speculate that, as
theory assumed that localization was strong, non-in"nitesimal values of JpD may
be responsible for the disagreements. Alternatively, it may be that the statistics of
< are not Gaussian, that the central limit theorem does not apply, either because
there are correlations between the sites on which the springs have been placed (due
to "nite wavelength and "nite system size) or because n

spring
"12 is not a su$cient

number of coupling springs.

5. EXPERIMENTS

In order to demonstrate the e!ect in the laboratory a small aluminum block, as
pictured in Figure 1(b), was constructed. It had nominal dimensions of
25)4]25)4]50)8 mm, but was nearly severed by some mm wide cuts in the
midplane that left the two halves joined by a residual ligament of dimensions
2)2]2)2]1 mm. Other short oblique cuts and spherical surfaces, as pictured, were
added in order to break the re#ection and rotation symmetries and enhance the
generation of a di!use "eld.

The structure was insoni"ed and monitored with piezoelectric point transducers
(dry-coupled Valpey}Fisher pin transducers) with useful bandwidth from 0)1 to



Figure 10. The results from bins 8}10, for the system of Figure 8.
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2)0 MHz. If the transducers were ideal and well calibrated, it would be su$cient to
use one transducer, e.g. the one labelled A in the "gure, as an impulsive source, and
use transducers B and 1 to receive. Localization would manifest as a greater
spectral energy density in receiver B than in receiver 1. If, however, B and 1 had
di!erent sensitivities, the e!ect we seek would be compromised. In order to mitigate
the e!ect of variable transducer sensititivity we opted for the pictured 4-transducer
scheme. We constructed the energy ratio

S
(A1)(B2)
(AB)(12)

, (45)

where the notation (XY) signi"es the spectral energy density in receiver Y due to the
impulsive source acting in transducer X. The quantity may be interpreted as the
ratio of energy in room 2 to that of room 1. It should have a zero value at zero time,
but increase to a late time value of unity in the non-localized regime. In the
localized case it should approach an asymptote that is less than unity. At the
expense of introducing additional stochastic #uctuations, the construction of this
ratio serves to remove the e!ect of transducer sensitivity. Assuming that each half of
the structure has the same absorptivity, the ratio also eliminates the e!ect of
absorption.

A ray picture serves to allow an estimate of the initial leaking rate that is, barring
di!raction corrections, independent of frequency. Applying equation (3) with the
shear wave speed (as the majority of the energy is in the form of shear waves) we



Figure 11. The energy ratio, between the energy in room 2 and 1, observed in the ultrasonic
experiments at the higher frequencies, between 898 and 1835 kHz. At these short wavelengths the
system is predicted not to localize and that is indeed what is observed. All 13 bins plotted here have
essentially identical behavior.
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"nd that the initial leaking rate is estimated to be 0)24/ms. Di!raction corrections
could modify this estimate if wavelengths are comparable to or greater than twice
the window size of 2 mm, i.e., for frequencies below 750 kHz. As discussed above,
the signi"cance of di!raction corrections is also the sign of the signi"cance of
localization; thus we predict localization at frequencies substantially less than
750 kHz, and extended modes at frequencies substantially greater than 750 kHz.
These predictions may be compared to observations.

The results, after spatial averaging, are plotted in Figures 11 and 12. In Figure 11
the energy ratio (45) is plotted versus time for the higher frequency bins. It is
observed that all these higher bins have essentially the same behavior; identical
initial leaking rates (of about 0)3/ms*slightly greater than the simple ray picture
predicted) and identical asymptotic value of about unity. In Figure 12 the energy
ratio (45) is plotted for the lower frequency bins, in the regime for which we expect
localization. This is indeed observed; at 200 kHz, for example, the asymptotic
energy in room two is only one-quarter that of room 1.

We may make a comparison of the observed late time asymptote, for example at
273 kHz where it takes a value of 0)5, with the theoretical expectation of order JpD



Figure 12. The energy ratio, between the energy in rooms 2 and 1, observed in the ultrasonic
experiments at frequencies of 195 (lowest curve), 272, 351 and 429 (highest curve) kHz. At these
wavelengths the system is predicted to localize and that is indeed what is observed. The asymptotic
energy density in room 2 is signi"cantly less than that of room 1, especially at the lowest frequencies.
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based on equation (37). Taking D to have its usual Weyl value for elastic waves
[18],

dN/du"D (u)"(</2n2)Mu2/c3
d
#2u2/c3

e
]

#(Su/8nc2
d
)[2}3(c

d
/c

e
)2#3(c

d
/c

e
)4]/[(c

d
/c

e
)2!1]#O (¸/c), (46)

where the volume of each room < is &(25)4 mm)3 and surface area S is
&6](25)4)2, we "nd that D, at 273 kHz is 0)26 ms. The leaking rate may be
estimated from equation (3) by neglecting di!raction e!ects, or taken from the slope
of the energy ratio at the earliest time; in both cases one obtains about 0)24. Thus
JpD is about 0)25, signi"cantly less than the observed asymptotic energy ratio of
0)5. This bin shows, furthermore, a peculiar and unpredicted slow approach to its
asymptote. It is as if the proper asymptote &0)25 is achieved at early times
(&10 ms, as in Figures 2 and 3, at a time of order 3/p) and then a di!erent
mechanism acts to augment the ratio over much longer times (and incidentally to
thereby mask the predicted overshoot as well). The anomalous behavior is
reminiscent of that observed in an earlier ultrasonic study [12] of Anderson
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localization in a disordered two-dimensional system. Here we content ourselves
with recognition of the substantial concurrence between theory and measurement,
and relegate resolution of the minor discrepancies to later work.

6. CONCLUSIONS

It has been shown theoretically, and demonstrated in numerical simulations and
in laboratory ultrasonic experiments, that energy #ow in weakly coupled
reverberant systems can be Anderson localized. The e!ect is signi"cant when the
energy #ow rate (in units of inverse time) is comparable to or less than modal
spacings. In the case that the rooms are coupled by a transparent window, the
criterion is equivalent to wavelength being comparable to or greater than window
size.
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